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Abstract

Buffeting forces on bridge decks are commonly modelled by Sears’ function. However, it is well known that Sears’

function is reliable only for very streamlined bridge deck sections and that a complete model would require a suitable

formulation of buffeting forces in time domain. In this paper, self-excited and buffeting loads are modelled by means of

indicial functions. Corresponding aerodynamic admittance functions are numerically evaluated for rectangular sections

and compared with experimental and analytical results. A complete time-domain model for cross-sections including

vertical turbulence is presented. Numerical simulations are performed on a sample rectangular section. Comparison

with experimental results and relevant flutter analyses are also discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Time-domain simulations are a powerful tool to evaluate the dynamic behaviour of bridges in atmospheric flow.

In fact, structural nonlinearity, which can be prominent in the case of long or super-long spans, can be accounted for in

the analysis, together with turbulence effects. External wind loads are commonly modelled as a combination of three

actions: (i) a quasi-steady component related to mean incoming wind, (ii) a self-excited part linearly dependent on

structural motion, and (iii) a buffeting fraction due to turbulent flow. These aspects are included here in a unique time-

domain formulation, neglecting their possible interaction. Attention is focused on load models for buffeting.
1.1. Background: liaison with thin airfoil

Load models commonly used to pattern the wind action on bridges follow the pioneering work by Davenport (1962)

on the response to gusty winds and by Scanlan and Tomko (1971) who worked on the modelling of flutter and buffeting

forces.

Such load models are built up by recalling the strong parallelism between thin airfoils and streamlined bridge decks.

A thin airfoil is assumed to be the theoretical reference section and referred to also as a flat plate (FP). The main

hypotheses on which thin airfoil theory is based, namely the existence of potential flow, the absence of separation of
e front matter r 2006 Elsevier Ltd. All rights reserved.
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shear layers and full gust coherence, do not apply strictly to bodies with different geometrical shapes. As a matter of

fact, no theoretical formulation is available to treat aeroelastic problems for bluff bodies like bridges. However, tools of

thin airfoil theory can furnish straightforward information also on bridge deck behaviour. Therefore, formulation of

external loads follows the guidelines of aerodynamic theory, but adapts the theory itself to the case of each bridge with

the introduction of proper experimental data.

The buffeting response of a bridge deck predicted with Davenport’s spectral approach is mainly based on modelling

of gust loading as a stationary random process, on the quasi-steady assumption and on the strip assumption, as

suggested by aerodynamicists Sears (1941) and Liepmann (1955). In particular, it is assumed that (i) buffeting action on

each section is independent from the action on the contiguous sections (‘strip assumption’), (ii) the buffeting force

applying on a section is induced by a gust persisting for an infinitely long time (‘quasi-steady assumption’), and (iii) the

effect of different wavelengths can be accounted for by means of aerodynamic admittance functions. The buffeting

response is computed mode-by-mode, neglecting aerodynamic coupling, while a joint admittance function describes the

distribution of buffeting forces along the bridge span.

The approach suggested by Scanlan and co-workers, furthermore, superimposes buffeting forces due to turbulent

wind components and self-excited forces due to flow–structure interaction. Both buffeting and self-excited forces are

included in a time-domain framework, common also to thin airfoil aerodynamics and characterized by frequency-

dependent functions. In particular, buffeting forces are expressed by means of aerodynamic admittance functions, while

self-excited forces are modelled via aeroelastic or flutter derivatives. These frequency-dependent functions are generally

available in terms of discrete-frequency parameters measured in wind tunnel tests.

The quantities valid for a thin airfoil and theoretically corresponding to aerodynamic admittance functions and

flutter derivatives, are known, respectively, as Sears’ function and Theodorsen’s circulation function. In particular, Sears’

function allows one to calculate lift due to a sinusoidal vertical gust encountering the airfoil (Sears, 1941), whereas

Theodorsen’s function is employed to describe self-excited lift developing on an airfoil in sinusoidal oscillation

(Theodorsen, 1935).

A time-domain representation of both buffeting and self-excited actions, without explicit dependence on frequency,

can be provided if appropriate functions are defined. According to thin airfoil theory, such functions describe the time

dependence of sectional forces due to elementary gusts or structural motion. The total resulting action can be calculated

via convolutions, accounting for arbitrary gusts and motions. In thin airfoil theory, Küssner’s (1936) function and

Wagner’s (1925) function provide, respectively, lift due to a sharp-edged gust investing the airfoil and self-excited lift

induced by an elementary step change in the angle of attack, that is in the relative placement of the section with respect

to the incident flow. Such functions are usually referred to as indicial functions. Corresponding indicial functions for

bridges can be analogously defined as Küssner- and Wagner-like functions, respectively, for buffeting and self-excited

forces. Indicial functions describing self-excited forces are calculated from flutter derivatives, rather than directly

identified in wind tunnel tests. Indicial functions for buffeting cannot be found in the literature. Commonly, a

frequency-based approach is adopted and Sears’ function is used to calculate buffeting response.
1.2. Literature survey: aerodynamic admittance functions and buffeting forces

After Davenport’s and Scanlan’s early work, several efforts have been carried out to remove the main assumptions

concerning buffeting response and characterize aerodynamic admittances.

For example, Scanlan (1984) discusses the effect of turbulence action within a load model which includes self-excited

forces modelled by means of indicial functions. Buffeting loads are defined via admittance functions and the analysis is

basically performed in the frequency domain.

The first time-domain formulation of wind action including buffeting and self-excited forces both modelled via

indicial functions is due to Scanlan (1993). In this work, different types of indicial functions are proposed to account for

unsteady gusty and self-excited excitations.

Moreover, several discussions on the existence of phenomenological relationships between buffeting and self-excited

parameters are carried out by Scanlan and Jones (1999) and Scanlan (2000, 2001). The concept is that vertical gusts and

vertical velocity of the bridge are similarly filtered by the structure. Therefore, the corresponding flutter derivatives may

contain information on aerodynamic admittance. An analogous observation can be made in the time domain, if indicial

functions are used, as underlined by Scanlan and Jones (1999). Scanlan (2000) emphasizes the same concept, defining

moreover a ‘corrected’ aerodynamic admittance that includes a coherence function to take into account that a bridge is

a three-dimensional object. Other relationships including admittance functions related to the aerodynamic moment are

proposed by Scanlan (2001). In each case, aerodynamic admittance is related to flutter derivatives associated with the

vertical motion of the deck.
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An alternative procedure to define admittance functions from flutter derivatives is proposed by Hatanaka and

Tanaka (2002). All flutter derivatives, and not only the ones related to vertical motion, are used to calculate the

admittance functions.

Experimental identification of lift admittance functions and comparisons with Sears’ function are due to Jancauskas

and Melbourne (1986), Sankaran and Jancauskas (1992) and Kawatani and Kim (1992). In particular, these research

groups worked on the identification of lift aerodynamic admittance in smooth and turbulent flow for rectangular

cylinders, with different experimental techniques, as free-decay tests and active gust generators. Jancauskas and

Melbourne (1986) performed experiments in smooth flow, identifying a trend of lift admittance functions with a

dimensional ratio. Sankaran and Jancauskas (1992) analysed admittance functions for rectangular sections invested by

flows with different turbulence intensities, pointing out a correspondence between high frequency turbulence and lift

admittance functions typical of streamlined sections. Kawatani and Kim (1992) used an active gust generator to

calculate the response, confirming basically the main results of Sankaran and Jancauskas (1992).

A comparison between buffeting response of a FP and different streamlined bridge deck sections is carried out by

Larose and Livesey (1997). Lift admittance functions of the Pont de Normandie and the Höga Kusten bridge are

measured, pointing out a strong decaying under the unity value for low frequencies. Such effects are further investigated

by Larose and co-workers, with the identification of a significant under-the-unity plateau for low frequencies of

excitation, for a class of streamlined sections. This effect is modelled by means of a two-wavenumber aerodynamic

admittance which takes into account some aspects of the three-dimensional character of the gusts (Larose and Mann,

1998). The effect due to the ratio between the size of the gusts and the characteristic dimension of the body is pointed

out by Larose (2005).

Lift and moment admittance functions are defined by Diana and co-workers as complex functions, characterized by

amplitude and phase shift. The measured admittances are introduced in the expression of buffeting forces and

superimposed on self-excited loads. An experimental check of the applicability of the superposition principle is carried

out, comparing admittance functions measured in bi-harmonic and mono-harmonic flows (Diana et al., 2002).

Further comparisons between wind tunnel measurements of self-excited coefficients and real part of corresponding

admittance functions evidence a similar trend of self-excited coefficients and corresponding admittance functions at

different angles of attack (Diana et al., 2004).

Apart from numerical simulations performed by Diana and co-workers for special cases with parameters measured in

wind tunnel, complete simulations of bridge dynamics in the time domain are performed modelling buffeting forces

adopting Sears’ function for vertical turbulence. An approximation of admittance functions and flutter derivatives via

rational functions, rather than via indicial functions, is proposed, for example, in Chen et al. (2000).

This load model takes into account aerodynamic coupling, but retains, for numerical simulations, the traditional

formulation of aerodynamic admittance, because of the lack of experimental data for the calculation of buffeting

parameters. This model, which can account for nonlinear aerodynamics, is further investigated by Chen and Kareem

(2001). Wind actions are split into two parts, depending on their frequency, and low and high frequency components are

identified. In particular, buffeting forces are calculated as high frequency components and linearized around the steady

angle of attack.
1.3. Issues addressed in this paper

Analytical and experimental studies [e.g., Scanlan (2001), Hatanaka and Tanaka (2002)] suggest a way to treat the

problem of admittance functions for bridges, in the sense that functions based on experimental data like flutter

derivatives can be used in the definition of buffeting loads, and they are preferable to the commonly employed Sears’

function. This suggestion is followed in the present work. Moreover, admittance functions are calculated from indicial

functions rather than from flutter derivatives. In this way, the advantages of a time-domain formulation are preserved.

In fact, although the connection between flutter derivatives and relevant admittances is assured by the Fourier

transform, when sufficient data are available, the use of the transform itself would imply a frequency representation

instead of a description in the time domain. It is shown that admittance functions obtained from indicial functions are a

good approximation of experimentally obtained admittance functions, at least for rectangular sections. The estimate of

admittance functions having the structure of Sears-like functions can be compared with experimental results provided

by Jancauskas and Melbourne (1986). Qualitative agreement is observed for sections with different dimensional ratios.

By this approach, the possibility of the use of parameters typical of self-excited forces to model turbulent action with an

acceptable error is investigated and a complete model of wind loads based on indicial functions is presented. Scanlan

and co-workers suggest the use of a couple of flutter derivatives to calculate lift admittance, while Hatanaka and

Tanaka (2002) propose a model including a set of four flutter derivatives to calculate the same admittance functions.
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A new interpretation of these results is provided, in the sense that the choice of the best model depends on sectional

geometry. In fact, a point of conjunction can be established between the two different approaches and related to the

geometry of the body under examination.

Finally, a simplified model including only vertical buffeting forces in the context of a time-domain framework for the

simulation of aeroelastic behaviour of bridge decks is proposed. In the perspective of an extended time-domain analysis

of a full bridge, with direct consideration of aerodynamic coupling, a complete cross-sectional analysis is performed and

the response of a two-dimensional rectangular section is calculated.

The point of view being strictly two-dimensional, drag forces and longitudinal turbulence components are neglected.

Span-wise coherence effects are accounted for.
2. Mechanical system

A rectangular symmetric cross-section represents here an elementary strip of a bridge deck (Fig. 1). The main

characteristic dimension is assumed to be the width of the deck section B, referred to as the chord. The half-chord is

indicated by b ¼ B=2. The thickness of the section is indicated by D, the span of the bridge by l.

The dimensional ratio B=D between chord and thickness is a parameter that describes the slenderness of the

structure, i.e. the optimization in the aerodynamic sense. Even if a rectangular section shows separation of flow as result

of sharp edges, for a section sufficiently elongated, flow reattaches and the aerodynamic behaviour should be similar to

that of an ideal FP. An ‘optimized’ section is referred to also as streamlined, in contrast to a bluff section, in which

separation of shear layers strongly affects the vortex street. Quasi-steady theory can qualitatively describe dynamic

behaviour of streamlined sections, while unsteady effects become fundamental for bluff sections [see, for example, the

quasi-steady analyses carried out by Costa and Borri(2006) on rectangular sections].

The body depicted in Fig. 1 is supposed to have only a vertical degree of freedom y (heaving) and a rotational degree

of freedom a (torsion). Horizontal displacements are neglected. The body is considered to be a rigid body: mass is

assumed to be concentrated at the centre of mass G and the elastic properties are represented by translational springs

with stiffness k, coupled with dampers with damping constant c, connected to the elastic centre E at a certain distance d.

As a result of the assumed symmetry of the section, the elastic centre E and the centre of mass G are coincident. They

are both located at the midspan of the deck section. The spring-damper pairs give to the section a vertical stiffness

ky ¼ 2k, a torsional stiffness ka ¼ 2d2k, a vertical damping cy ¼ 2c and a torsional damping ca ¼ 2d2c.

Two reference frames are defined: first a Cartesian inertial reference frame OXYZ, and second a coordinate system

ox0y0z0, attached to the vibrating structure, with the origin o coincident with the centre of mass G of the section and the

x0 and the y0 axes oriented, respectively, along the sectional middle-line chord and the orthogonal direction.

The reference frames are assigned by following the ‘airfoil convention’, namely positive vertical translations are

directed downwards and positive rotations are clockwise (nose-up).
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Fig. 1. Cross-section schematic (B ¼ chord; b ¼ half-chord; D ¼ thickness; k ¼ stiffness; c ¼ damping constant), relevant points

(G ¼ centre of mass; E ¼ elastic centre), wind forces (FL ¼ lift force; F D ¼ drag force; Ma ¼ aerodynamic moment), wind flow

(U ¼ wind velocity), global reference system (OXYZ) and local reference system (o0x0y0z0).
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The equations of motion describing the dynamic system are given by

m €yþ cy _yþ kyy ¼ FY , (1)

I €aþ ca _aþ kaa ¼MZ, (2)

where m is the mass and I is the mass momentum of inertia per unit length.

The wind load is modelled as an external action, namely a live load. In particular, the resulting force acting on the

section is decomposed as the combination of a lift force FL, a drag force FD and an aerodynamic moment Ma, applied

on the centre of mass G. Lift and drag forces act, respectively, along the y0 and the x0 axes. The aerodynamic moment

acts about the z0 � Z-axis directed along the bridge span, namely Ma �MZ. Vertical force FY is obtained by

combining lift and drag forces with reference to the global coordinate system:

FY ¼ �FL cos aþ FD sin a. (3)

The ‘airfoil convention’ is adopted also in the wind load representation, that is the lift force FL is positive upwards

and the aerodynamic moment Ma is positive clockwise (nose-up).

Linearized theory is used: the angle of attack a, defined as the angle between the section chord and the main flow

direction, is small. This allows one to assume that jFLj ¼ jFY j. The lift force and aerodynamic moment are considered

in a global reference frame in what follows. Accordingly, the components of motion are expressed in global coordinates.

Such a point of view is often assumed implicitly in linear aerodynamics, when one considers only one reference system

that is the global one.
3. Wind field

The section is immersed in a turbulent wind field. Wind is assumed incompressible and nonviscous. The wind velocity

Uw can be decomposed additively as a time-space variable field

UwðM; tÞ ¼ UðMÞ þ ÛðM; tÞ, (4)

where t is the time, U is the mean wind speed and Û represents a turbulent perturbation, acting at point M of

coordinates X M , Y M and ZM .

The mean wind is directed along the X -axis. In this simplified case, only the vertical component of turbulence w,

directed along the vertical axis Y , is accounted for. It is assumed that such a turbulence component is mainly

responsible for buffeting forces in a planar scheme. The resultant wind field is then given by

UwX ðM; tÞ ¼ UðMÞ; UwY ðM; tÞ ¼ wðM; tÞ; UwZðM; tÞ ¼ 0. (5)

Assuming neutral conditions, the mean wind velocity U may be expressed by the logarithmic profile, while turbulence

components are defined through an assigned power-spectral density function. Lumley and Panowsky’s normalized

spectrum is assumed for vertical turbulence (Simiu and Scanlan, 1996)

fSwðf Þ

u2
n

¼
3:36ðLuxf =UÞ

1þ 10ðLuxf =UÞ5=3
, (6)

where Lux is the integral length scale, f is the frequency and u2
n
is the friction velocity, which depends on roughness and

takes into account shear stresses.
4. Time-dependent sectional forces

If the superposition principle is assumed to apply and drag components are neglected, the wind load acting on a

section can be expressed as

FLðtÞ ¼ FLbðtÞ þ FLseðtÞ, (7)

MaðtÞ ¼MabðtÞ þMaseðtÞ, (8)

where subscripts b and se indicate, respectively, buffeting and self-excited forces.

In this case, dead loads and static wind forces are neglected.
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4.1. Buffeting forces

For bridges, lift and moment buffeting forces FLb and Mab can be written, in the mixed time–frequency domain and

considering only vertical harmonic disturbances w (Scanlan and Jones, 1990), as

FLbðtÞ ¼
1

2
rU2B

dCL

da
wLwðkÞ

w

U
, (9)

MabðtÞ ¼
1

2
rU2B2 dCM

da
wMwðkÞ

w

U
, (10)

where r is the air density, k ¼ ob=U is the reduced frequency, CLðaÞ and CM ðaÞ are the aerodynamic coefficients

defined as functions of the angle of attack. The admittance functions wLwðkÞ and wMwðkÞ represent the transfer functions

between the turbulent component w and the sectional forces. In the quasi-steady formulation, the admittance functions

take the value of unity.

For a thin airfoil encountering a sinusoidal vertical gust wðtÞ ¼ w0 expðiotÞ, lift buffeting force is expressed via

Sears’ function

wðkÞ ¼ CðkÞ½J0ðkÞ � iJ1ðkÞ� þ iJ1ðkÞ, (11)

obtained by combining Bessel functions of first and third kind J0ðkÞ and J1ðkÞ and Theodorsen’s complex circulation

function CðkÞ ¼ F ðkÞ þ iGðkÞ.

Sears’ function wðkÞ is the lift admittance function for thin airfoils, i.e. the frequency-based transfer function which

relates vertical velocity fluctuations due to turbulent wind to the lift force and moment fluctuations experienced by the

structure. Gust action is assumed as fully correlated along the span. The buffeting lift is calculated as

FLbðtÞ ¼ 2prUbwðkÞwðtÞ.
In order to account for arbitrary gusts, superposition of sharp-edged gusts may be considered. Dimensionless lift

developing on an airfoil due to a sharp-edged gust of amplitude w0 striking the leading edge of the airfoil at s ¼ 0 can be

described through Küssner’s function cðsÞ, a function representing the counterpart of Sears’ one in the time domain, as

FLbðsÞ ¼ 2prUbw0cðsÞ, where s is dimensionless time defined by s ¼ Ut=b (Fung, 1969).

An approximation of Küssner’s function in incompressible flow, for sX0, is given by cðsÞ ’
1� 0:500e�0:130s � 0:500e�s.

4.2. Self-excited forces

The common expression for self-excited forces is in a mixed time–frequency domain, considering a sinusoidal coupled

motion of reduced frequency K ¼ oB=U (Scanlan and Jones, 1990):

FLseðtÞ ¼
1

2
rU2B KHn

1ðKÞ
_yðtÞ

U
þ KHn

2ðKÞ
B_aðtÞ

U
þ K2Hn

3ðKÞaðtÞ þ K2Hn

4ðKÞ
yðtÞ

B

� �
, (12)

MaseðtÞ ¼
1

2
rU2B2 KAn

1ðKÞ
_yðtÞ

U
þ KAn

2ðKÞ
B_aðtÞ

U
þ K2An

3ðKÞaðtÞ þ K2An

4ðKÞ
yðtÞ

B

� �
, (13)

where r is the air density and Hn
i and An

i ði ¼ 1; . . . ; 4Þ are the flutter derivatives, commonly identified in wind tunnel

tests as function of reduced frequency K or reduced velocity U red ¼ 2p=K ¼ 2pU=oB. These expressions of self-excited

loads follow ‘Scanlan’s convention’, namely lift force is positive downwards and aerodynamic moment is positive

clockwise (nose-up).

Self-excited forces can be defined in a pure time-domain framework by means of indicial functions, alternatively as a

function of t or s, as common in wing aerodynamics. By following the expressions analysed by Costa and Borri(2006)

for a set of rectangular sections, the lift force and moment can be defined, respectively, as follows:

FLseðsÞ ¼
1

2
rU2B

dCL

da
FLy
ð0Þ

2

B
y0ðsÞ þ FLa ð0ÞaðsÞ þ

Z s

0

F0Ly
ðs� sÞ

2

B
y0ðsÞdsþ

Z s

0

F0La
ðs� sÞaðsÞds

� �
, (14)

MaseðsÞ ¼
1

2
rUB2 dCM

da
FMy
ð0Þ

2

B
y0ðsÞ þ FMa ð0ÞaðsÞ þ

Z s

0

F0My
ðs� sÞ

2

B
y0ðsÞdsþ

Z s

0

F0Ma
ðs� sÞaðsÞds

� �
, (15)

where Fhk are the indicial functions (h ¼ L; M; k ¼ y; a). Primes denote differentiation with respect to s.
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Each indicial function describes the evolution of the resulting action as a consequence of a sudden change in angle of

attack a or vertical velocity y0. It is defined as the sum of a constant part a0hk and n exponential groups characterized by

the pairs of coefficients (aihk, bihk):

FhkðsÞ ¼ a0hk �
Xn

i¼1

aihk expð�bihksÞ, (16)

or, alternatively, in the time domain,

F̂hkðtÞ ¼ a0hk �
Xn

i¼1

aihk exp �bihk
2U

B
t

� �
. (17)

For a thin airfoil in sinusoidal motion, self-excited lift force due to circulation can be calculated by means of

Theodorsen’s circulation function as FLseðtÞ ¼ 2prUbCðkÞwðtÞ, where wðtÞ ¼ _yþUaþ 1
2

b_a is the downwash, that is the

vertical velocity of the wind particle in contact with the special point at the three-quarter chord distance from the

leading edge (rear point).

The counterpart in the time domain of Theodorsen’s function corresponds to Wagner’s indicial function fðsÞ, which
depicts the growth of the lift force on an airfoil due to a sudden unit change on the angle of attack a0. Self-exited lift is

expressed by FLseðsÞ ¼ 2prUba0fðsÞ.
The following exponential approximation of Wagner’s function due to Jones is usually adopted

fðsÞ ’ 1� 0:165e�0:0455s � 0:335e�0:30s.

A similar correspondence can be established for bridges between indicial functions Fhk and equivalent complex

circulatory functions ChkeqðkÞ ¼ FhkeqðkÞ þ iGhkeqðkÞ.

In this load model, a group of four indicial functions Fhk is considered, therefore four equivalent functions ChkeqðkÞ

are introduced. The group of four indicial functions allows maximum flexibility in the representation of self-excited

forces.

The model proposed by Hatanaka and Tanaka (2002) accounts, on the contrary, only for two equivalent

Theodorsen’s functions (CLeqðkÞ and CMeqðkÞ), referring, respectively, to lift force and aerodynamic moment.

In the special case of thin airfoil, only one Wagner’s function is adequate to define both self-excited lift and moment

in time domain: the components of downwash w (i.e. vertical velocity, torsional displacement and torsional velocity) are

accounted for equally.

Therefore, as the geometry of the section approaches the airfoil, the number of parameters needed to describe

unsteady forces is reduced accordingly, by considering both indicial functions and exponential groups. Two indicial

functions with one exponential group or one indicial function with two exponential groups are equivalent from the

point of view of the number of parameters necessary to capture aerodynamic features and they correspond to the limit

case of FP.

It is common that complex geometries like bridge deck sections require more than one indicial function to represent

unsteady effects. Moreover, different functions underline the different role played by each component of downwash.

In this sense, a model accounting for one function interpolating, at the same time, all four flutter derivatives for lift

and moment is more suitable in the case of very streamlined sections, while more than one function becomes necessary

for bluff bodies.

The identification of indicial function coefficients is performed via a nonlinear least-square method. A Nelder-Mead

simplex algorithm is adopted. Once experimental aeroelastic derivatives are assigned, a prescribed number

of exponential groups characterizing each indicial function is fixed, and appropriate coefficients are identified

by minimizing a norm, defined, for example, as the two-norm of the difference between estimated and experimental

values. Relevant details are given in Costa and Borri(2006). Results of the identification procedure are sensitive

to the starting data, with dependence, in particular, on the range of reduced velocities covered by the data and on

dispersion of measurements. A weighting function can be included to account for significance of different flutter

derivatives.

5. Use of indicial functions to define buffeting loads

An approximate approach to define buffeting loads in time domain is proposed here.

First of all, it is noted that (a) a sinusoidally moving section immersed in a uniform flow and (b) a fixed section under

the action of a sinusoidal gust can be treated in a similar way, at least within the limits of a linearized approach [see

Tubino (2005)]. Even if situations (a) and (b) give rise to different physical phenomena and local distributions of

pressures, it is assumed as a working hypothesis that, under certain conditions, the integral measure of forces could
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exhibit no great differences, and that the measured quantities called flutter derivatives may contain some information

also on the estimate of the admittance, at least in a pure cross-sectional analysis with a fully coherent gust.

Moreover, by the observation of similarity of Wagner’s and Küssner’s functions, another suggestion arises, that is, in

the time domain, for bridge deck cross-sections, indicial functions representative of self-excited and buffeting forces

could be not too far from each other, and as a limit condition they could be ‘‘look-alikes’’. Then, the investigation of

what happens if indicial functions obtained for self-excited forces are also used to define buffeting loads appears to be

an interesting subject.

For a thin airfoil, the use of indicial functions obtained for self-excited forces leads to incorrect results, because self-

excited and buffeting forces are fully reproduced through the well-defined Wagner’s and Küssner’s functions. But, for

the purposes of aeroelastic analysis of bridges, with special attention to cross-sectional models tested in wind tunnel, an

approximate formulation of the theory could be accepted, in which self-excited and buffeting loads are reproduced by

means of equal indicial functions. In any case, in the absence of measured admittances, Sears’ function is often adopted.

A tool to define a function accounting, in some way, for the specific geometrical features of the section is proposed here.

The action due to turbulent wind components is expressed by

FLbðsÞ ¼
1

2
rU2BC 0L FLyð0Þ

2

B
wðsÞ þ

Z s

0

F0Lyðs� sÞ
2

B
wðsÞds

� �
, (18)

MabðsÞ ¼
1

2
rU2B2C0M FMyð0Þ

2

B
wðsÞ þ

Z s

0

F0Myðs� sÞ
2

B
wðsÞds

� �
. (19)

Indicial functions have, in this context, the meaning of dimensionless forces developing on the section due to a vertical

gust.

In order to validate this approximate approach and/or to search its limits, two steps are performed: (i) the

identification of indicial coefficients, (ii) the calculation of an equivalent Theodorsen’s function and equivalent

admittance.

As a first step, indicial functions are obtained through a nonlinear least-squares procedure from flutter derivatives.

Coefficients of equivalent Theodorsen’s functions are calculated by the following explicit relationships:

FhkeqðkÞ ¼ 1�
Xn

i

aihkk2

b2ihk þ k2
, (20)

GhkeqðkÞ ¼ �
Xn

i

aihkbihkk

b2ihk þ k2
. (21)

Then, admittance functions for bridges weqðkÞ are calculated as equivalent Sears-like functions, then as combinations

of equivalent Theodorsen’s functions ChkeqðkÞ and Bessel functions. In particular, two admittance functions are

calculated, one for the lift and one for the aerodynamic moment:

wLðkÞ ¼ CLyeqðkÞ½J0ðkÞ � iJ1ðkÞ� þ iJ1ðkÞ, (22)

wM ðkÞ ¼ CMyeqðkÞ½J0ðkÞ � iJ1ðkÞ� þ iJ1ðkÞ. (23)

The validation of the model is based on the comparison of estimated aerodynamic admittances with experimental

results, in cases in which they are available.

The procedure is applied to different rectangular sections, identified by dimensional ratios B=D. Flutter derivatives

for all sections are taken from Matsumoto et al. (1996). Interesting issues on torsional flutter mechanism of 2-D

rectangular cylinders can be found in Matsumoto et al. (1997).

Some remarks on the proposed model: Sankaran and Jancauskas (1992) point out that the level of turbulence

intensity affects admittance functions. In this case, admittance functions do not take into account explicitly turbulence

intensity, but, on the other hand, they are obtained from indicial functions, which are different if obtained under

different turbulence conditions. Therefore, in principle, the effect of turbulence intensity is already included in self-

excited parameters; the approach presented can be assumed valid only for fully correlated sinusoidal gusts, which

provide only a simplified representation of natural turbulence. On the other hand, it is important to underline that

aerodynamic admittances can be successfully identified with a numerical procedure starting from indicial functions, and

that the suggested tool can be used confidently to identify admittance functions preferable to Sears’ function.
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5.1. Admittance functions

Lift and moment admittance functions are calculated for a set of rectangular sections characterized by

different dimensional ratios: B=D ¼ 5; 8; 10; 12.5; and 15. First of all, indicial functions are evaluated and

corresponding equivalent Theodorsen’s functions are calculated according to Eqs. (20) and (21). Approximation

of lift flutter derivatives is performed successfully with indicial functions characterized by one exponential group.

Moment flutter derivatives require an approximation with two exponential groups for the bluffest sections,

in this case B=D ¼ 5, 8 and 10. This fact influences strongly the results, especially for moment admittance

functions.
5.1.1. Lift admittance functions

Lift admittance functions are calculated according to Eq. (22). Results are shown in Fig. 2, together with the

reference Sears’ function, i.e. the lift admittance corresponding to thin airfoil. As expected, the increasing of
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dimensional ratio B=D corresponds to a qualitative similarity with Sears’ function, especially in the low frequency

range.

In particular, results by the identification procedure have been compared with experimental results taken from

Sankaran and Jancauskas (1992) and Jancauskas and Melbourne (1986). They derive lift admittance functions with two

different experimental techniques and both results are in excellent agreement with each other. The conditions of the

experimental set-up are, in both cases, those required by the application of the proposed method, i.e. admittances are

obtained under fully correlated gusts. Results are plotted in Figs. 3, 6 and 7.

It is worth recalling that the applied procedure is supposed to give an estimate of admittance functions, and that

experimental data used for calculation and validation of the procedure are obtained in a different wind tunnel, under

different conditions.

In all cases, the region of reduced velocities U red ¼ ½7:410; 22:24� (i.e. of reduced frequencies k=p ¼ ½0:045; 0:135�)
corresponds to the range for which flutter derivatives are available. Corresponding admittances are indicated by solid

lines. In the present work, flutter derivatives in the range of reduced velocity U red ¼ ½0; 7:410� (i.e. of reduced

frequencies k=p over 0:135) are only extrapolated. Corresponding admittances are indicated by dashed lines. For very
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high reduced velocities, in this case for U red422:24 (i.e. k=po0:045), the admittance functions are also indicated by

dashed lines.

For the B=D ¼ 8 section, lift admittance calculated via indicial functions (thick line) is compared with Sears’

functions (thin line) and experimental values (circles) of rectangular sections B=D ¼ 10 and 6 (Fig. 3). In the range

corresponding to the availability of measured coefficients, a good interpolation of the measured admittances is

achieved. In the low reduced velocity range, the identified admittance does not interpolate the experimental results. In

fact, also for flutter derivatives, values are extrapolated in such an interval, and the admittance is expected to be

extrapolated too. All the measured data remain above the identified curve, which represents only a ‘‘convex envelope’’ of

the measured results.

As an example, flutter derivatives corresponding to B=D ¼ 8 are plotted in Fig. 4. Five values are known for each

flutter derivative, in the range U red ¼ ½7:410; 22:24�. For the identification procedure, a number of fictitious
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Fig. 6. Comparison of admittance function calculated by means of indicial functions for a rectangular section with B=D ¼ 15 with

Sears’ function and experimental results (Jancauskas and Melbourne, 1986).
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experimental data is generated, once interpolating polynomial functions are assigned. Solid lines appearing in Fig. 4

represent the approximation of flutter derivatives obtained by means of indicial functions, which are shown in Fig. 5, in

comparison with Wagner’s and Küssner’s functions.

The lift admittance corresponding to the most streamlined rectangular section B=D ¼ 15 is compared with B=D ¼

16:67 (Fig. 6), while the bluffest section treated (i.e. the rectangular section with B=D ¼ 5) is compared with

experimental results valid for B=D ¼ 4 and 6 (Fig. 7). According to previous observation, dashed parts of the curves

refer to extrapolated data. Trend followed by the identified admittances is consistent with the experiments. Based on all

the examples considered, it can be observed that, for the low reduced velocities under 7:410, the admittance curve

obtained from indicial functions represents always a ‘‘convex envelope’’ for the possible experimental data. Based on

these results, a conservative estimation of the admittance can be practically obtained by combining admittances

estimated by means of indicial functions in the low-frequency range and Sears’ function in high frequency range.

Such results could be improved if flutter derivatives and, as a consequence, indicial functions, were available in a

wider range.

Qualitative comparison can be performed also with results provided by Scanlan (2000,2001) for bridge deck cross-

sections.
5.1.2. Moment admittance functions

Moment admittance functions are calculated by following the same procedure, according to Eq. (23). Results are

shown in Fig. 8. In both cases, for lift and moment admittance functions, all curves shrink to zero, by letting k go to

infinity.

The identification of the moment admittance function may be a matter of discussion, due to the lack of experimental

data. Some comparisons can be performed with literature results, provided, for example, by Scanlan (2000, 2001).

In particular, moment admittances greater than unity and with shapes very different from Sears’ function have been

obtained by Scanlan (2000).

Interesting results confirming the previous ones are also given by de la Foye (2001), who measured, for a rectangular

section with dimensional ratio B=D ¼ 8, a moment aerodynamic admittance three times greater than unity.

Nevertheless, an important remark should be added on the moment admittances of sections B=D ¼ 5, 8 and 10, that

show an unusual behaviour. They have in common the fact that indicial functions necessary to capture the behaviour of

the flutter derivatives require two exponential groups (which is surely a numerical matter, but it is strongly suggested by

the distribution of the experimental data; in this sense, the choice of exponential groups contain indirectly some physical

information). This circumstance suggests that unsteady effects involved in self-excited forces are significant and cannot

be disregarded. It could be possible that such unsteady effects influence also lift derivatives used to calculate the

admittance. In this case, the physical phenomena involved could be too far from the applicability conditions of the

method and compromise the results. In this sense, the number of groups necessary to identify the indicial functions

could define a limit for the applicability of the proposed method.
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6. Numerical simulations

The complete load model represented by Eqs. (18) and (19) is applied to a sample rectangular section with

dimensional ratio B=D ¼ 12:5, together with self-excited forces described by (14) and (15). In this model, buffeting and

self-excited forces are treated with an analogous formulation which accounts for process unsteadiness. The aim of this

section is to clarify the differences, in terms of dynamic behaviour, of the indicial model with respect to the quasi-steady

one.

Once the Lumley and Panofsky spectrum is assigned to vertical turbulence (Simiu and Scanlan, 1996), the following

analyses are performed: (i) quasi-steady buffeting; (ii) unsteady buffeting with equal indicial functions for self-excited

and buffeting loads.

Mechanical properties of the analysed cross-section are recalled in Table 1.

Indicial functions and aerodynamic coefficients obtained from flutter derivatives are recalled in Tables 2 and 3. Only

one exponential group is sufficient in order to well capture the features of the eight flutter derivatives.

Numerical simulations are performed over a time interval of 8.192 s, with a time step of 5� 10�4 s.

Root-mean-squares and maximum values for heaving and torsional displacements are obtained in both cases, at

different wind speeds (Figs. 9 and 10, respectively). They can be compared with results provided by Bartoli and Righi

(2006).

A response overestimation is expected in considering both load models, because of the effective loss of coherence in

incoming wind due to three-dimensional effects, as underlined, for example, by Matsuda et al. (1999).

In particular, by considering heaving displacements, the quasi-steady buffeting model overestimates the sectional

response, while the model based on indicial functions seems to capture the effective sectional behaviour. If torsion

displacements are considered, a major overestimation of the response is observed in indicial model results. This fact is

mainly due to self-excited forces and to the restricted number of experimental data available in the range of reduced

velocities of interest. This effect is already observed in smooth flow, but results amplified in the case of turbulent flow.

Nevertheless, it can be easily removed if a more detailed extraction of aeroelastic data is available. Perfect frequency
Table 1

Geometrical and mechanical properties

l (m) b (m) oy ðrad s
�1Þ f y (Hz) m ðkgm�1Þ zy

0:920 0:1875 36:88 5:87 3:810 0:0018

D (m) B (m) oa ðrad s
�1Þ f a (Hz) I ðkgm2 m�1Þ za

0:03 0:375 52:15 8:30 0:037 0:0028

Rectangular section B=D ¼ 12:5.

Table 2

Indicial functions

IF a1 b1

FLy 0.9711 2.146

FLa 1.0218 0.6636

FMy 0.2022 19.6084

FMa 0.9541 2.0731

Rectangular section B=D ¼ 12:5.

Table 3

Dynamic derivatives

C0L 6.48

C0M 1.04

Rectangular section B=D ¼ 12:5.
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coupling is observed, in turbulent case, at a slight higher incoming wind velocity, with respect to the smooth flow case.

In terms of displacements, the flutter condition becomes less evident, being not possible to identify an incoming wind

velocity for which vertical and torsional displacements remain at the same amplitude. As reference values, the main

results obtained in smooth flow are collected in Table 4.
7. Conclusions

In this paper, a simplified method for describing buffeting loads via indicial functions is presented. Indicial functions

calculated from aeroelastic derivatives are used to filter the vertical gusts as well as the vertical velocity of the section.

Admittance functions for lift and moment are calculated starting from indicial functions. The procedure is verified by

comparison of equivalent admittances with experimental results. A good trend is obtained for both ‘aerodynamic’ and

‘bluff’ sections. Nevertheless, a limitation of the proposed approach is found in the identification of the moment
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Table 4

Results on flutter analyses

Flutter analysis method Ucrit ðms�1Þ f crit (Hz) U red;crit

Indicial function model 15:35 7:32 5:43
Wind tunnel tests 15:54 7:37 5:75

Rectangular section B=D ¼ 12:5.

C. Costa / Journal of Fluids and Structures 23 (2007) 413–428 427
aerodynamic admittances for too-bluff sections. Numerical simulations can be performed easily, including in the same

framework self-excited and buffeting loads.
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